Real groups transitive on complex flag manifolds
نویسندگان
چکیده
منابع مشابه
Real Groups Transitive on Complex Flag Manifolds
Let Z = G/Q be a complex flag manifold. The compact real form Gu of G is transitive on Z. If G0 is a noncompact real form, such transitivity is rare but occasionally happens. Here we work out a complete list of Lie subgroups of G transitive on Z and pick out the cases that are noncompact
متن کاملPoisson Structures on Complex Flag Manifolds Associated with Real Forms
For a complex semisimple Lie group G and a real form G0 we define a Poisson structure on the variety of Borel subgroups of G with the property that all G0-orbits in X as well as all Bruhat cells (for a suitable choice of a Borel subgroup of G) are Poisson submanifolds. In particular, we show that every non-empty intersection of a G0-orbit and a Bruhat cell is a regular Poisson manifold, and we ...
متن کاملSteepest descent on real flag manifolds
Among the compact homogeneous spaces, a very distinguished subclass is formed by the (generalized) real flag manifolds which by definition are the orbits of the isotropy representations of Riemannian symmetric spaces (sorbits). This class contains most compact symmetric spaces (e.g. all hermitian ones), all classical flag manifolds over real, complex and quaternionic vector spaces, all adjoint ...
متن کاملAttractor Networks on Complex Flag Manifolds
Robbin and Salamon showed in [10] that attractor-repellor networks and Lyapunov maps are equivalent concepts and illustrate this with the example of linear flows on projective spaces. In these examples the fixed points are linearly ordered with respect to the Smale order which makes the attractor-repellor network overly simple. In this paper we provide a class of examples in which the attractor...
متن کاملOn the Number of Control Sets on Flag Manifolds of the Real Simple Lie Groups
In this paper we determine upper bounds for the number of control sets on flag manifolds of a real non-compact simple Lie group whose Lie algebra is a real form of a complex simple Lie algebra. The estimates for the number of control sets are based on the results of San Martin and Tonelli [6]. They are determined by computing the orbits of a subgroup of the Weyl Group.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 2001
ISSN: 0002-9939,1088-6826
DOI: 10.1090/s0002-9939-01-05825-7